Persistence for Circle Valued Maps

نویسندگان

  • Dan Burghelea
  • Tamal K. Dey
چکیده

We study circle valued maps and consider the persistence of the homology of their fibers. The outcome is a finite collection of computable invariants which answer the basic questions on persistence and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of real valued maps, circle valued maps enjoy a different class of invariants called Jordan cells in addition to bar codes. We establish a relation between the homology of the source space and of its relevant subspaces with these invariants and provide a new algorithm to compute these invariants from an input matrix that encodes a circle valued map on an input simplicial complex. Department of Mathematics, The Ohio State University, Columbus, OH 43210,USA. Email: [email protected] Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA. Email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Persistence for Circle-Valued Maps

We study circle valued maps and consider the persistence of the homology of their fibers. The outcome is a finite collection of computable invariants which answer the basic questions on persistence and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of real valued maps, circle valued maps enjoy a different class of invariants called Jordan cell...

متن کامل

Linear relations, monodromy and Jordan cells of a circle valued map

In this paper we review the definition of the monodromy of an angle valued map based on linear relations as proposed in [3]. This definition provides an alternative treatment of the Jordan cells, topological persistence invariants of a circle valued maps introduced in [2]. We give a new proof that homotopic angle valued maps have the same monodromy, hence the same Jordan cells, and we show that...

متن کامل

NIELSEN NUMBERS OF n-VALUED FIBERMAPS

The Nielsen number for n-valued multimaps, defined by Schirmer, has been calculated only for the circle. A concept of n-valued fiber map on the total space of a fibration is introduced. A formula for the Nielsen numbers of n-valued fiber maps of fibrations over the circle reduces the calculation to the computation of Nielsen numbers of single-valued maps. If the fibration is orientable, the pro...

متن کامل

Circle valued momentum maps for symplectic periodic flows

We give a detailed proof of the well-known classical fact that every symplectic circle action on a compact manifold admits a circle valued momentum map relative to some symplectic form. This momentum map is Morse-Bott-Novikov and each connected component of the fixed point set has even index. These proofs do not appear to be written elsewhere.

متن کامل

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1104.5646  شماره 

صفحات  -

تاریخ انتشار 2011